H. crassidens

				1
			Longitude &	Sample
Population Species	Locality	Region ¹	Longitude & Latitude	
			Latitude	size
1 H. crassidens	Harihari	Region¹ WD WD	Latitude 170°27′ 43°03′	size 3
1 H. crassidens2 H. crassidens	Harihari Hokitika	WD WD	Latitude 170°27′ 43°03′ 171°00′ 42°46′	size 3 1
 H. crassidens H. crassidens H. crassidens H. crassidens² 	Harihari Hokitika Mt Arthur	WD WD NN	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′	3 1 4
 H. crassidens H. crassidens H. crassidens² H. crassidens 	Harihari Hokitika Mt Arthur Picton	WD WD NN SD	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′	3 1 4 2
 H. crassidens H. crassidens H. crassidens² H. crassidens H. crassidens H. crassidens 	Harihari Hokitika Mt Arthur Picton Maud Island	WD WD NN SD SD	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′ 173°54′ 41°02	3 1 4 2 4
 H. crassidens H. crassidens H. crassidens² H. crassidens H. crassidens H. crassidens H. crassidens 	Harihari Hokitika Mt Arthur Picton Maud Island Wellington	WD WD NN SD SD WN	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′ 173°54′ 41°02 174°48′ 41°15′	3 1 4 2 4 25
 H. crassidens H. crassidens H. crassidens² H. crassidens H. crassidens H. crassidens H. crassidens H. crassidens H. crassidens 	Harihari Hokitika Mt Arthur Picton Maud Island Wellington Paremata	WD WD NN SD SD WN WN	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′ 173°54′ 41°02 174°48′ 41°15′ 174°53′ 41°06′	3 1 4 2 4 25 4
 H. crassidens H. crassidens H. crassidens² H. crassidens 	Harihari Hokitika Mt Arthur Picton Maud Island Wellington Paremata Kapiti Island	WD WD NN SD SD WN WN	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′ 173°54′ 41°02 174°48′ 41°15′ 174°53′ 41°06′ 174°56′ 40°51′	3 1 4 2 4 25 4
 H. crassidens H. crassidens H. crassidens² H. crassidens H. crassidens H. crassidens H. crassidens H. crassidens H. crassidens 	Harihari Hokitika Mt Arthur Picton Maud Island Wellington Paremata	WD WD NN SD SD WN WN	Latitude 170°27′ 43°03′ 171°00′ 42°46′ 172°46′ 41°12′ 174°01′ 41°18′ 173°54′ 41°02 174°48′ 41°15′ 174°53′ 41°06′	Sample size 3 1 4 2 4 2 5 4 5 3 4

Mt Taranaki

174°06′ 39°16′

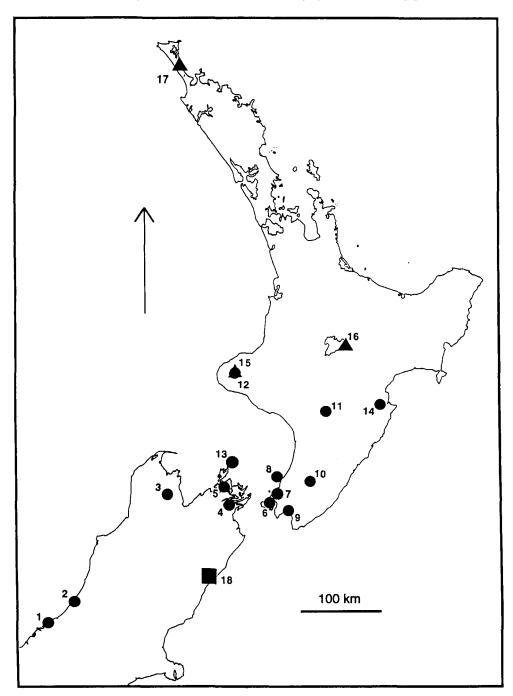
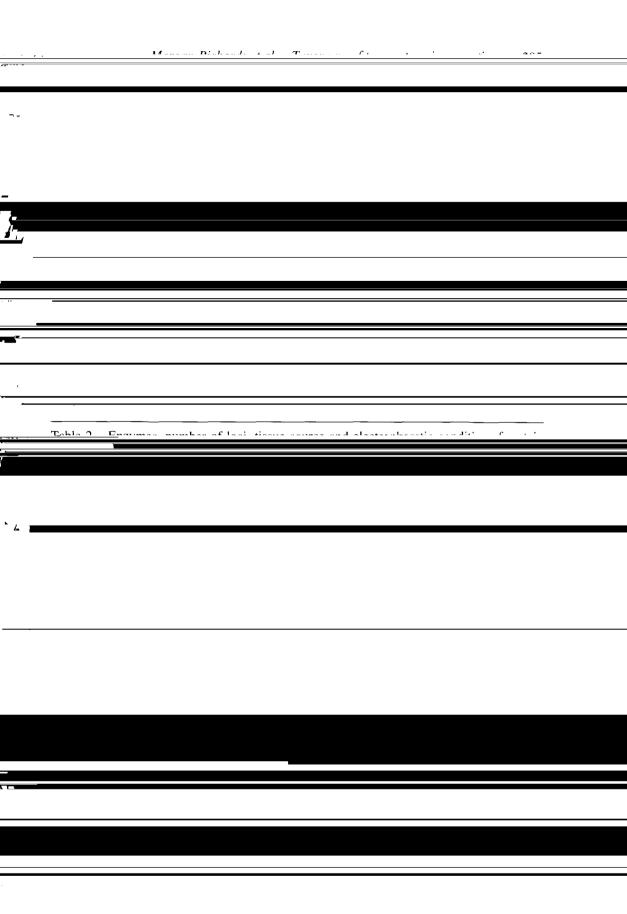



Fig. 1 - New Zealand localities where tree weta were collected for this study. Two species were

304 Journal of The Royal Society of New Zealand, Volume 25, 1995

Weta were killed using ether and immediately dissected. Tissue from the malpighian tubules and femur muscles was removed, blended with an equal quantity of distilled water, and stored at -80°C until required for electrophoresis. All specimens were stored in ethanol

Starch gel electrophoresis techniques followed those of Allendorf et al. (1977). Tissue was transferred by a filter paper wick to a 12.5% horizontal starch gel. Direct current was applied

306

Table 3 – Allele frequencies and unbiased estimates of average heterozygosity, H (Nei, 1978), for 18 populations of tree weta, (populations as in table 1)

Ak 1.00 (b) -Gpi 1.00 1.00 1.00 1.00 (b) -1.00 -Hk-1 (b) -Hk-2 (b) -1.00 Idh-2 (a) 1.00 1.00 1.00 1.00 1.00 0.98 0.75 1.00 0.67 1.00 1.00 1.00 1.00 1.00 -1.00 (b) - $0.02 \ 0.25 -$ 0.33 -1.00 0.25 1.00 -(c) -(d) -0.75 -Ldh-1 $0.70\ 0.25\ 0.33\ -$ 0.80 -(a) -0.18 -(b) 0.25 -0.74 0.13 0.20 - 0.67 -0.10 -1.00 1.00 1.00 1.00 -(c) 0.75 1.00 1.00 1.00 0.75 0.06 0.87 0.10 0.25 -0.98 -1.00 1.00 -(d) -0.25 -0.02 -0.02 -0.50 -0.10 -(e) -Ldh-2 (a) $1.00 \pm 0.0 \pm$ 1.00

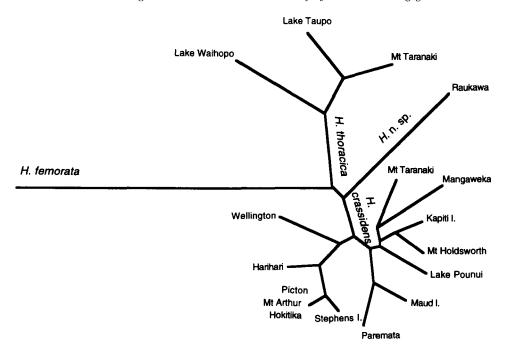


Fig. 2 – Neighbor-joining tree (Saitou and Nei 1987) using Cavalli-Sforza and Edwards (1967) arc distance from 26 loci for 18 populations of *Hemideina*. Branch lengths are proportional to genetic distances.

Table 3 (contd)

						į	H_cro	ısside	n _s s			F.	<i>Iс.с.</i>	n. sn) the	H. oracii		fem- orata
locu	s 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	 17	18
Pep	_3																	
(a) (b)	1.00 -	1.00 -	1.00 -	1.00	1.00 -	1.00 -	1.00	1.00 -	1.00 -	1.00 -	1.00 -	1.00 -	1.00	1.00	1.00 -	1.00 -	1.00 -	- 1.00
Pgd		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00	1.00	1.00	0.25	1.00	0.50	1.00	
(a) (b)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-	0.67	-	-	-	0.23	-	0.50		_
(c)	_	_	_	_	_	_	_	_	_	0.13	_	_	_	0.75	_	-	_	_
(d)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.00
Pgn	1-1																	
(a)	_	_	-	-	-	_	-		-	-		_	-	-	1.00	1.00		
(b)	1.00	1.00	1.00	1.00	_	1.00	_	_	-	_		_	1.00		-	_	0.25	0.75
(c)	-	-	-	-	-	-	-	-	-	-	-	-	_	1.00	-	_	_	-
(d)	_	_	_	_	1.00		1.00	1.00	1.00	1.00	1.00	1.00	_	_	_	_	-	_
Pgn	1-2														1.00	1.00		1.00
(a)	0.50	_	_	_	_	- 1.00	_	0.17	_ 0.50	0.50	1.00	1.00	_	_	1.00	1.00	_	1.00
(b) (c)	0.50	_	_	_	_	1.00	_	-	- 0.50	-	-	-	_	_	_	_	1.00	_
(d)	0.50	1.00	1.00	1.00	1.00		1.00	0.83	0.50	0.50	_	_	1.00	1.00	_	_	-	_
H	0.50	1.00	1.00	1.00	1.00		1.00	0.00	5.50	5.50			1.00	1.00				
	0.058	3	0.00		0.033	3	0.029	9	0.07	8	0.00		0.013	3	0.00		0.01	6
		0.00		0.00		0.023		0.032		0.052		0.013		0.019		0.04		0.018

Table 5 – Comparison of tree weta from Stephens Island with those from Wellington using three morphological characters using Student t-tests for separate populations (separate variances), P = probability that the mean of the two population samples do not differ significantly, P > 0.05 = not significant (n.s.).

Character	Comparison (n)		Mean	Significance (P)		
Number of	All adults	(41)	13.610	n.s.		
stridulatory ridges	All juveniles	(14)	13.786			
	All females	(27)	13.296	n.s.		
	All males	(28)	14.000			
	Wellington	(13)	12.769	0.038		
	Stephens I.	(31)	14.548			
Hind-tibia	All adults	(40)	21.333	0.000		

			_
Adult females	(18)	22.569	0.000
Adult males	(18)	20.247	
Wellington females	(9)	21.878	n.s.
Stephens I. females	(9)	23.261	
Mallinotan malaa		. 11.420	

 Stephens I. males
 (14)
 19.907

 Hind-tibia
 All adults
 (40)
 2 103
 n.s

310 Journal of The Royal Society of New Zealand, Volume 25, 1995

Allozyme variation is conservative, reflecting at most 30% of the underlying DNA variation (Lewontin 1974). Thus the data obtained in this study are conservative and almost certainly underestimate the level of divergence among study populations. We make our assessments below by analysing the level and pattern of divergence in allozyme variation, realising that no single species definition is sufficient to deal with every population.

Hemideina crassidens

Levels of population divergence among all populations now assigned to *H. crassidens* are

majority of samples are small, more than half of the clusters in the neighbor-joining tree (Fig. 2) group samples from geographically proximate locations together, a result which gives us confidence in this analysis. The Stephens Island population and those from Mt Holdsworth and Mt Arthur fit into the geographical structure of *H. crassidens*. All genetic variation in these populations is in the form of allele frequency differences. The parapatric populations of *H. crassidens* show in many cases less divergence from the Stephens Island tree weta than

that had genetic characters cignificantly different from these of all the other nonvictions of H

ı		
Į.		
		_
		-
_		-
•	crassidens studied. It came from the most eastern collection site, and from initial searches it now appears to be isolated from other <i>H. crassidens</i> populations. The extent of the genetic differentiation of this weta from <i>H. crassidens</i> is equivalent to the differentiation separating <i>H. thoracica</i> and <i>H. crassidens</i> . The differentiation includes three fixed differences and unique alleles, which we believe warrant its recognition as a separate species under both the Evolutionary and Phylogenetic Species Concept. Despite apparent opportunity in the recent past for interbreeding with <i>H. crassidens</i> , this species has maintained a high level of genetic differentiation and therefore may also be a separate species under the Biological Species Concept. It is formally described by Morgan-Richards (in press).	
	ACKNOWLEDGMENTS This study was supported in part by grants from the Department of Conservation and the	

Internal Grants Committee, VUW. For the capture of animals we thank: Jan Allen, Paul

among Pocket Gopher species (genus *Thomomys*) In Otte, D.; Endler, J. A. (Eds) Speciation and Its Consequences. pp.284–306. Sinauer Associates. Inc. Massachusetts

Ramsay G W · Rigelow R S 1978 · New Tealand weter of the genus_Hemideina The Weta (News